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Abstract—A capacitive sensing scheme to implement a dual-axis MEMS accelerometer using a single proof mass is 
presented in this paper. The proposed design uses a combination of cantilever and folded beams placed along a single 
device axis to realize dual-axis motion. COMSOL Multiphysics® modeling software was used to computationally validate 
theoretical MATLAB analyses by performing eigenfreguency, parametric sweep, and frequency sweep studies on the 
physical system, taking into account any air-damping effects caused by movement of the proof mass over the underlying 
substrate. The final design achieves resonant frequencies of 1.5 kHz and 2.3 kHz, and sensitivities of 27.6 mV/(m/s2) 
and 11.2 mV/(m/s2) in the x- and y-axes, respectively, in a footprint less than 2 mm by 2 mm in size. Further simulations 
and MATLAB analysis find the proposed device to be in compliance with all imposed design requirements and constraints.  

 
Index Terms—MEMS, capacitive sensing, accelerometer, dual-axis 

I.  INTRODUCTION 

Many commercial-off-the-shelf accelerometers such as the 
ADXL193 and the A600 series only offer single-axis sensing [1], [5]. 
A trivial way to implement multi-axial sensing is by effectively 
stacking, or positioning multiple single-axis accelerometers in various 
axes. However, this would increase the sensor footprint unneededly 
[4], as well as drive up manufacturing costs; methods to realize multi-
axial sensing with a single proof mass are favored [1] - [3]. This paper 
presents a scheme to implement an accelerometer capable of dual-axis 
sensing using one proof mass. This paper will discuss the mechanical 
and electrical principles of operation, design requirements and 
proposed geometry of the accelerometer, simulation results from 
COMSOL Multiphysics®, and MATLAB analyses. The proposed 
device is designed for a dynamic range of ± 5 G, and is realizable in 
a footprint no larger than 2mm by 2mm. The design consists of two 
cantilever beams and four folded beams to realize multiaxial motion 
in a capacitive sensing scheme. 

II. MECHANICAL THEORY OF OPERATION 

The proposed accelerometer consists of a differential capacitive 
sensing element, whose capacitance varies according to acceleration 
[3]. When an external force is applied to the system, the proof mass 
is perturbed, and a sensing finger attached to the proof mass is 
displaced from the center of an electrode pair, changing the 
capacitance between the finger and each electrode. Using a voltage 
divider configuration, with the impedance of each capacitor acting as 
the voltage dividers,  
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Fig. 1. Geometry of proposed two-axis accelerometer 

 
The proof mass is suspended at the center of the system by 

cantilever beams, which act as springs in a damped mass system to 
elicit a predictable displacement given an input force in the axis 
transverse to the beams. To detect acceleration in the other axis, the 
cantilever beams are attached to a set of guided beams to enable 
compliance in both axes. The structural topology of the proof mass 
and cantilever beams is shown in Fig. 1. 

 

A. Calculation of Resonance Frequencies 

The geometry described above suggests an asymmetry between 
both axes. Naturally, the proof mass will have greater compliance in 
the y-direction than in the x-direction. The equation for spring 
constant in the x-direction was calculated to be 

𝑘𝑘𝑥𝑥 = 2�
𝐸𝐸Si𝑡𝑡𝑊𝑊𝑥𝑥

3

𝐿𝐿𝑥𝑥3
� 

where ESi is the Young’s modulus of silicon, t is the thickness of the 
beam, Wi and Li is the width and length of the beam, respectively, for 
motion in an i-axis. The spring constant in the x-direction shown 
above is consistent wit h four folded cantilever beams for comb drives, 
each with a spring constant of 

𝑘𝑘 = 𝐸𝐸Si𝑡𝑡𝑊𝑊𝑥𝑥
3

2𝐿𝐿𝑥𝑥3
, 
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in parallel. The equation for spring constant in the y-direction was 
calculated to be 

𝑘𝑘𝑦𝑦 = 1
2
�𝐸𝐸𝐸𝐸𝑊𝑊𝑦𝑦

3

𝐿𝐿𝑦𝑦3
�. 

Because the end of each cantilever beam allowing motion in the y-
direction is not anchored, and instead attached to another set of 
springs, each beam may be modeled as a free cantilever beam, each 
with a spring constant of 

𝑘𝑘 = 𝐸𝐸Si𝑡𝑡𝑊𝑊𝑥𝑥
3

4𝐿𝐿𝑥𝑥3
. 

The y-direction spring constant shown above is consistent with two 
free cantilever beams in parallel. The proof mass m was calculated by 
multiplying each proof mass dimension by the density of silicon ρSi. 

𝑚𝑚 = 𝜌𝜌Si𝑡𝑡mass𝑤𝑤massℎmass 
The resonance frequency for motion in the i-axis was calculated by: 

𝜔𝜔𝑖𝑖 = �𝑘𝑘𝑖𝑖
𝑚𝑚 

B. Damping Calculations 

 The damping coefficient b is expressed by: 

𝑏𝑏 =
𝐴𝐴𝐴𝐴
ℎ

 

where A is the area of overlap between the proof mass and underlying 
substrate (this is equivalent to the area of the proof mass), h is the gap 
between the proof mass and substrate, and 𝜇𝜇 is the viscosity of air. 
Here, 𝜇𝜇 = 1.83 × 10−5 kg/(m ∙ s), which is the dynamic viscosity of 
air at room temperature. The quality factor Q may in turn be derived 
from b by: 

𝑄𝑄 =
√𝑘𝑘𝑘𝑘
𝑏𝑏  

III. ELECTRICAL THEORY OF OPERATION 

A. Sensitivity of a Capacitive Sensor 

Consider a simplified version of the sensing circuit comprised of 
one pair of differential capacitors. The voltage on the sensing finger 
may be determined by voltage division: 

𝑉𝑉 =
𝑍𝑍𝐶𝐶1

𝑍𝑍𝐶𝐶1 + 𝑍𝑍𝐶𝐶2
𝑉𝑉𝐷𝐷𝐷𝐷 =

1

1 + 𝑑𝑑0 − 𝑥𝑥
𝑑𝑑0 + 𝑥𝑥

𝑉𝑉𝐷𝐷𝐷𝐷 

From this equation, an expression for x in terms of V can be 
determined: 

𝑥𝑥 = 𝑑𝑑0 −
2𝑑𝑑0
𝑉𝑉𝐷𝐷𝐷𝐷

𝑉𝑉 

Combining Hooke’s Law (F = kx) and Newton’s Second Law (F = 
ma): 

𝑥𝑥 = 𝑚𝑚
𝑘𝑘
𝑎𝑎. 

This may be substituted in the equation found for the differential 
capacitors, 

𝑚𝑚
𝑘𝑘
𝑎𝑎 = 𝑑𝑑0 −

2𝑑𝑑0
𝑉𝑉𝐷𝐷𝐷𝐷

𝑉𝑉. 

Solving this equation for V to get a mathematical relationship between 
V and a: 

𝑉𝑉(𝑎𝑎) = −
𝑚𝑚𝑉𝑉𝐷𝐷𝐷𝐷
2𝑑𝑑0𝑘𝑘

𝑎𝑎 +
𝑉𝑉𝐷𝐷𝐷𝐷

2 . 

The sensitivity of a sensor is defined as the change in the output 
quantity over the change in the input (or sensed) quantity. In this case, 
the output quantity is voltage V, and the sensed quantity is 
acceleration a: 

sensitivity = �
𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑� 

Taking the derivative of V(a) yields an equation for sensitivity: 

sensitivity = �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑� =

𝑚𝑚𝑉𝑉𝐷𝐷𝐷𝐷
2𝑑𝑑0𝑘𝑘

 

 

IV. DESIGN REQUIREMENTS AND ANALYSIS 

The accelerometer should comply with all design requirements 
tabulated below. 

 
Table 1.  Requirements 

 
The requirements were found to be satisfied by the design 
parameters listed below. 
 
Table 2.  Design Parameters 

 
The proof mass and cantilever design parameters in Table 2 were 
selected such that the resonance frequencies in the x- and y-axes 
would be lower than 2.5 kHz, and therefore comply with 
Requirements 1.2 and 1.3 (Table 1). The final resonances were found 
to be 𝜔𝜔𝑥𝑥 = 1.5 kHz and 𝜔𝜔𝑦𝑦 = 2.3 kHz. 
 
 
 

No. Parameter Specification 

1.1 VDD 5 V 
1.2 Resonant frequency in X < 2.5 kHz 

1.3 Resonant frequency in Y < 2.5 kHz 
1.4 Sensitivity in X > 10 mV/(m/s2) 
1.5 Sensitivity in Y > 10 mV/(m/s2) 
1.6 Non-linearity in 100 Hz – 500 Hz Minimize 
1.7 Dynamic Range ± 5 G 
1.8 Design Area Minimize 

(2 mm x 2 mm) 
1.9 Material Single-crystal silicon 

(5 μm thick) 
1.10 Minimum lithography feature  1 um 
1.11 Spacing to substrate 5 um 

 

Parameter Value 

Extruding length 5 μm  
Proof mass width 700 μm 

Proof mass length 700 μm 
Sensing finger length 0.02 mm 
Sensing finger width 5 μm 
Gap between sensing finger and electrode 1 μm 
Beam width 2 μm 
Beam length 300 μm 
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V. COMSOL SIMULATION RESULTS 

COMSOL Multiphysics® modeling software was used to With the 
exception of the Eigenfrequency Study, all simulations were 
performed taking into account the damping effects of the proof mass 
moving over the substrate in air. 

A. Eigenfrequency Study 

The Eigenfrequency Study was used to analytically determine the 
bending modes of the system, as well as their corresponding 
eigenfrequencies. Figs. 2 and 3 depict the bending modes of the 
damped mass system in the x- and y-axes, respectively. The color map 
corresponds to change in displacement given the calculated 
eigenfrequency.

 
Fig. 2.  The bending mode depicting movement in the x-direction, and 
its associated eigenfrequency. 
The resonance frequency of the x-axis bending mode (Fig. 2), was 
found to be 1.5 kHz. 

 

 
Fig. 3.  The bending mode depicting movement in the y-direction, and 
its associated eigenfrequency. 
The resonance frequency of the y-axis bending mode (Fig. 3), was 
found to be 2.3 kHz.  
 

B. Sensitivity Analysis 

 A sensitivity analysis was performed in both axes by varying the 
magnitude of the boundary load exerted on the proof mass, and 
determining the corresponding response of the sensor in the form of 
displacement. Plotting the resulting data, the sensitivity of the sensor 
may be estimated by the slope of the line of best fit. This study was 

conducted in COMSOL by applying a Parametric Sweep to a 
Stationary Study. The simulation was programmed to iterate through 
a range of forces corresponding to ± 10 G. The resulting x- and y-axis 
plots are shown in Figs. 4 and 5, respectively. 

 
Fig. 4.  Displacement as a function of applied force in the x-direction. 
Forces were varied in a parametric sweep from -10 G to 10 G. 
 

 
Fig. 5.  Displacement as a function of applied force in the y-direction. 
Forces were varied in a parametric sweep from -10 G to 10 G. 
 
The structural analysis performed in COMSOL Multiphysics yields 
sensitivity data in displacement per unit force, or meters per Newton.  

slope =
𝑥𝑥
𝐹𝐹

=
𝑥𝑥
𝑚𝑚𝑚𝑚

  

Combining Eq. (6) with Eq. (10): 

slope =
𝑥𝑥
𝐹𝐹 =

𝑑𝑑0 −
2𝑑𝑑0
𝑉𝑉𝐷𝐷𝐷𝐷

𝑉𝑉

𝑚𝑚𝑚𝑚  

Sensitivity in units of voltage per unit acceleration is given by: 
𝑉𝑉
𝑎𝑎

= slope ∙ �
𝑚𝑚𝑉𝑉𝐷𝐷𝐷𝐷
2𝑑𝑑0

� 

The slopes of the sensitivity lines in Figs. 4 and 5 are 0.80 m/N for 
motion in the y-axis, and 1.96 m/N  for motion in the x-axis. 
Calculating sensitivity in terms of volts per acceleration using Eq. 
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(18) yields 11.2 mV
m/s2

 for the y-axis, and 14.1 mV
m/s2

 for the x-axis. 

These results comply with the sensitivity requirements 1.4 and 1.5 in 
Table 1. 
 

C. Dynamic Range Test 

 Requirement 1.7 (Table 1) dictates that dynamic range of the 
accelerometer correspond to ± 5 G. Figs. 4 and 5 correspond to this 
dynamic range, and show ideal linearity throughout the range. The 
dynamic range is limited by the physical structure of the sensor, 
specifically the spacer parameter value. In the proposed design, the 
spacer has a value of 1 µm, the smallest allowable dimension. A DC 
input force in the x-direction of 5 G representing the upper limit of 
the desired dynamic range, for instance, would yield a displacement 
of just over 0.5 µm (Fig. 4). Because the spacer is 1 µm in length, a 
0.5 µm displacement is easily achievable. A DC input force of 5 G in 
the y-direction yields a displacement of about 0.23 µm. However, 
since motion in the y-axis is not functionally limited by the structure, 
the sensor is able to realize unobstructed, linear motion in this axis as 
well. 
 

D. Linearity Study 

 Linearity is vital to maintaining the integrity of a sensor reading. 
Ideally, the accelerometer should be designed such that the system is 
robust against inputs with varying frequency. For instance, in this 
accelerometer, the displacement peaks at resonance. In this scenario, 
the voltage seen across the capacitor divider would correspond to a 
force much larger than what was actually applied, and affect the 
integrity of the reading. Requirement 1.6 (Table 1) ensures that the 
response of this accelerometer is linear, or its linearity minimized, for 
low-frequency inputs. The linearity study was conducted for both 
axes in COMSOL Multiphysics by setting the boundary load of the 
relevant axis equal to the force generated on the proof mass by 1 G of 
acceleration, and performing a frequency sweep from 100 Hz to 500 
Hz, with discrete steps of 100 Hz. Performing the frequency domain 
analysis yielded complex displacement values; only the real 
components were plotted. 

 

 
Fig. 6. Linearity test in x-axis for near-DC frequencies. Frequency was 
swept from 100 Hz to 500 Hz in increments of 100 Hz. 

 

 
Fig. 7. Linearity test in y-axis for near-DC frequencies. Frequency was 
swept from 100 Hz to 500 Hz in increments of 100 Hz. 
 
To determine the displacement of the proof mass at low, high, and 
resonance frequencies, begin with a motion equation. The motion of 
an oscillatory damped mass system, which the accelerometer 
presented here is an example, may be characterized by the following 
differential equation: 

𝑚𝑚
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 + 𝑏𝑏

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑘𝑘 = 𝐹𝐹 

Applying the Fourier transform and solving for x, an equation relating 
displacement and frequency may be established: 

𝑋𝑋(𝜔𝜔) =
𝐹𝐹
𝑚𝑚

𝜔𝜔02 − 𝜔𝜔2 + 𝑗𝑗 𝜔𝜔𝜔𝜔0
𝑄𝑄

 

Taking the absolute value and plotting the output with respect to 
frequency yields the magnitude plots shown in Figs. 8 and 9. 

 
Fig. 8.  Proof mass displacement as a function of frequency, expressed 
in meters. Frequency sweep analysis was performed for a boundary 
load equivalent to 1 G acting on the proof mass. 
 
Examining Fig. 8, the displacement due to a 1 G acceleration at very 
low frequencies is 4.4 μm  for a force exerted in the x-axis, and 
2.2 μm  for the y-axis. At resonance, the displacement peaks at 
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128 μm  for the x-axis, and 90.4 μm  for the y-axis. At very high 
frequencies, the displacements in both axes tend toward zero. 

 
Fig. 9.  Proof mass displacement as a function of frequency, expressed 
in decibels. Frequency sweep analysis was performed for a boundary 
load equivalent to 1 G acting on the proof mass. 
 
A summary of these findings above is tabulated below (Table 3). 
 
Table 3.  Displacement at Varying Frequencies 

 

VI. CONCLUSION 

This paper presents a topology to implement dual-axis sensing for 
a MEMS accelerometer using a single proof mass. The final design 
has been shown to meet and/or exceed all listed design requirements 
and constraints (Table 5). 
 
Table 5.  Requirement Compliance 

 
 

Furthermore, MATLAB and COMSOL Multiphysics analyses proved 
complementary, offering corroborating accounts as to the compliance 
of the system to the requirements listed in Table 1. 
 
Table 4.  MATLAB vs. COMSOL Multiphysics Results 

 
 

Comparing the MATLAB and COMSOL Multiphysics columns, 
the calculated sensitivity drops. This makes intuitive sense, as the 
COMSOL Multiphysics simulation takes into account the damping 
effects of the proof mass movement over the underlying substrate on 
what is essentially an air cushion. The spring constants are also 
slightly higher in the latter case, as the MATLAB scripts 
simplistically approximate the spring system as a combination of 
either free or guided cantilever beams. Overall, the theoretical values 
and analytically derived counterparts seem to agree within a 
reasonable margin, offering an experimental validation of the 
operating principles behind a capacitive, dual-axis, MEMS 
accelerometer. 
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Frequency Displacement 

0 4.4 μm (x-axis) 
2.2 μm (y-axis) 

ω0 128.1 μm (x-axis) 
90.4 μm (y-axis) 

∞ 0 μm 
 

No. Specification Actual 

1.1 5 V 5 V 
1.2 < 2.5 kHz 1.5 kHz 

1.3 < 2.5 kHz 2.3 kHz 
1.4 > 10 mV/(m/s2) 27.6 mV/(m/s2) 
1.5 > 10 mV/(m/s2) 11.2 mV/(m/s2) 
1.6 Minimize Minimize 
1.7 ± 5 G ± 5 G 
1.8 2 mm x 2 mm  1.36 mm x 0.80 mm 
1.9 Single-crystal silicon 

(5 μm thick) 
Single-crystal silicon 
(5 μm thick) 

1.10 1 um 1 um 
1.11 5 um 5 um 

 

Parameter MATLAB 
(Theoretical) 

COMSOL 
(Analytical) 

Spring constant (x-axis) 0.5007 N/m 0.5102 N/m 
Spring constant (y-axis) 1.0015 N/m 1.2523 N/m 
Resonance frequency 
(x-axis) 

1.50 kHz 1.4954 kHz 

Resonance frequency 
(y-axis) 

2.12 kHz 2.35 kHz 

Sensitivity (x-axis) 28.1 mV/(m/s2) 27.6 mV/(m/s2) 
Sensitivity (y-axis) 14.1 mV/(m/s2) 11.2 mV/(m/s2) 
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